

# Subsea Production Control Systems

Presented by: Christopher Curran

Author: Christopher Curran

# Lesson objectives

- Define criteria for subsea controls
- Examine types of subsea control systems
- Give examples of valve and choke actuation
- Discuss an overview of electrical systems
- Examine and analyse hydraulic systems
- Identify topsides hydraulic controls interfaces
- Identify topsides computer/master control station (MCS) interfaces
- Illustrate shutdown systems and control logic
- List industry standards and BP codes

# Lessons learned – Thunder Horse

# Jumper construction – P30-F-J01



DC 32 Manifold

### **Extract from P&ID**



# What went wrong?



Design Criteria for Subsea Controls



### Factors to be considered during system design

Distance to reservoir

Reservoir geography

Reservoir pressure and temperature

Water depth

**Number of wells** 

Well type (oil, gas, water injection)

Type and number of functions to be monitored

### Typical subsea items to be controlled:

- Tree valves
- Chokes
- Downhole safety valves
- Manifold valves
- Subsea isolation valves (SSIVs)
- High integrity pressure
   protection systems (HIPPS)
   barriers
- Subsea processes:
  - Separators
  - Pressure boosters
  - Subsurface multilateral valves



Typical measured variables in a subsea production system:

- Pressure
- Temperature
- Flow rate
- Valve position
- Choke position
- Sand production rate
- Pig detection
- Control system housekeeping:
  - Hydraulic supply pressures
  - Electrical supply voltage and current
  - Communications error rates



### Typical items controlled by subsea production control system

### Tree valves

• 5 to 15 per tree, depending on well type and tree complexity

### **Chokes**

One or two per tree

### Manifold valves

Project dependent

### **Operations**

- Open/close
- Production flow control
- Water injection and gas lift flow control
- Chemical injection control and metering

### Type of surface facilities:

- Semi-submersible
- Spars
- Buoys
- Fixed platform:
  - Manned
  - Unmanned
- Floating, production, storage and offloading (FPSO)
- Land based



# Considerations for deciding the most appropriate control system

### **Project life**

- Weeks
- Years

### Distance to the controlled items

- Feet/metres
- Miles/kilometres

### Required response time

- Seconds
- Minutes

# Types of Subsea Control

# Types of control systems

A.Direct hydraulic

B.Piloted hydraulic

C.Sequence hydraulic\*

D.Electro-hydraulic\*

E.Multiplex electro (optical) hydraulic

<sup>\*</sup>Not discussed in detail.





### **Direct hydraulic control**



### **Direct hydraulic control**

# Direct hydraulic control

### **Summary**

- Simplest of all control systems
- Dedicated hydraulic hose for each subsea function being controlled
- Control supplies are attached directly to the valve being actuated
- Typically used for workover applications and small systems

### **Advantages**

- Low cost
- Reliability is high due to the critical components being on the surface
- Maintenance access is very good; all critical components are on the surface

### **Disadvantages**

- Very slow
- Large number of hoses (one per function)
- Dump valves can be used to speed up tree valve closure time
- Limitation in distance (10,000ft/3km) due to slow response
- No subsea monitoring due to no electrical signals



### Piloted hydraulic



### Multiplexed electro-hydraulic



Multiplexed electro-hydraulic

# Multiplexed electro-hydraulic

### **Advantages**

- Operates over large distances
- Faster response times
- Smaller umbilical diametre
- Allows control of many valves/ wells via a single communications line
- Redundancy is easily built in
- Enhanced monitoring of operation and system diagnostics
- Ideal for unmanned platform or complex reservoirs
- Able to supply high volume of data feedback

### **Disadvantages**

- Cost is high due to:
  - Electronics within the SEM
  - Addition of a computer topside
  - Addition of computer software
- The above costs balance against smaller and less complex umbilicals and advancing technology reducing the cost of the electronics.
- Reliability critical due to:
  - Critical components are used subsea within the SEM
  - Electrical connections
  - Sensors



Typical multiplexed electro-hydraulic system



# Valve and Choke Actuation



### Typical field equipment – MUX electro-hydraulics





# Subsea control module – choke operation

## SCM





# Overview of Electrical Systems



### **Control options – separate electrical power and comms**



**Control options – combined electrical power and comms** 



**Control options – separate electrical power and comms (fibre)** 

Electrical Analysis - Communications

## Frequency shift keying (FSK)

- Binary FSK (BFSK): One frequency for 0 and one frequency for 1.
- One frequency designated as 'Mark or 1'; other frequency designated as 'Space or 0'.



## Phase shift keying (PSK)

- Binary PSK (BPSK) One phase for 0 and one phase for 1.
- One frequency designated as 'Mark or 1'; other frequency designated as 'Space or 0'.



## Factors affecting communication analysis

### Major concern

- Signal attenuation
- Distortion and unintended harmonics in waveform to/ from Subsea power and communications unit (SPCU) to Subsea electronic modules (SEMs)
- Crosstalk

### Goal

Reduce bit error rate. Reduce Crosstalk.

# Factors affecting communication analysis

- Umbilical length: longer offsets have higher attenuation losses
- Minimum refresh rate for data from subsea sensors
- Speed of response to subsea emergency shutdown (ESD) commands
- Umbilical cable size
- Field layout and distance
- Communications super-imposed on power vs. separate communications and power



## Optical budget for fibre optic systems

Transmitter Optical Power Output: AA (dBm)

Receiver Optical Power Threshold: BB (dBm)

Goal: Tx - Losses > Rx

#### **Fibre Optic Losses**

```
Fibre Loss = \alpha L (dB); where \alpha is the fibre attenuation (dB/m) and L is the length (both static and dynamic)
```

Patch Points/Connector Losses = # of connects \*Loss per connector (dB)

Device attenuation = # of devices \*Loss per device (dB)

Safety Margin = *defined per project* (dB)

Attenuation (dB) = 10 \* log input signal (W) / output signal (W)

## Electrical Analysis - Power

## AC single phase power

### **Description:**

- Single sinusoidal voltage source
- Voltage goes to zero twice every cycle
- Frequency = 50-60 Hz
- Two wires (pairs)



### Single phase power is used for:

- Low-to-medium voltage (250–690 VAC)
- Short-to-medium tie-back distance (~15 miles)
- Small loads (watt to kilowatt range)
- Can be used for most deepwater projects



## DC power

#### **Description:**

- Constant voltage and current
- One or two wires in umbilical

#### **Used for:**

- Long-distance transmission of HV power
- Large loads (e.g. subsea processing, all electric systems)

#### **Advantages:**

- Less expensive transmission cable
- Improved voltage stability
- Less power loss
- Better efficiency over long distances

#### **Disadvantages:**

- Cannot use transformers
- AC/DC conversion equipment cost?

#### **Examples of future projects using DC power**

• Long distance Arctic tie-backs (20-200 MW, 80-600 km)





## Factors involved in power analysis

- Cable attenuation, impedance, DC resistance, capacitance, inductance, and conductance at system operating frequencies
- Minimum load analysis
  - Finds the EPU voltage which gives maximum SCM voltage at min system load
- Maximum load analysis
  - Finds the EPU voltage which gives minimum SCM voltage at max system load
- Voltage analysis
  - SEM voltage at max and nominal EPU voltage at full load
- Maximum and minimum load current demand using information from sMPFM, compressors, separators, DHPT sensors, SEMSs, SCM housekeeping.
- Maximum and minimum power demand
- EPU power rating  $(P = V_{max}I_{max})$
- Power factor analysis

## Overview of Hydraulic Systems



**Control options – dual hydraulic pressure distribution** 



**Control options – single intensification** 



**Control options – closed loop hydraulics** 



**Control options – open loop hydraulics** 

## Hydraulic Analysis

## System requirements

- Type of hydraulic system
- Reliability and redundancy
- Water depth and hydrostatic head
- Frictional losses
- Emergency shutdown philosophy
- Operating pressures (minimum and maximum)
- Subsea hydraulic boosting
- Valve closure time requirements
- Need and sizing of accumulators (subsea and topsides)

## Key analysis outcomes

- Opening and closing response times of the process valves under conditions of minimum and maximum process pressure
- Time for the pressure to recover following a process valve opening
- Time to carry out a sequence of valve openings, such as the opening of a tree (neglecting choke valve operation)
- Stability of opened process valves to pressure transients caused by operation of other control and process valves (sympathetic control valve delatching, process valve partial closing, etc.)
- Response time to close process valves in the event of a common close command, such as an ESD ventdown at the surface, venting off hydraulic control valves via supply lines, subsea quick dump
- Time to prime the hydraulic system from a depressurized state
- Stability of opened downhole control and safety valves to pressure transients caused by operation of other safety or IWCS valves (sympathetic control valve delatching, process valve partial closing, etc.)

# 5" valve open and close (min. pipe pressure)



**Success criteria**: LP supply line pressure – 127 bar > Return Line

Plot 1: LP Supply line pressure, bara
Plot 2: Actuator opening cavity pressure, bara
Plot 3: Return line pressure, bara
Plot 4. Valve piston position

## Sequential valve operation



**Success criteria**: LP supply line pressure – 127 bar > Return Line

#### **Sequence**:

5" valve opened at t=1s, 120s, 240s; 2"valves open at t=360s, 390s, 420s; Choke actuated from t=470s to 502s

Plot 1: SCM Supply Line Pressure Plot 2: SCM Return Line Pressure

### ESD LP vent for 5" and 2" valves

#### bar



Plot 1: LP Supply Line, bara

Plot 2: LP Return Line, bara

Plot 3: 5" actuator piston position

Plot 4: 2" actuator piston position

## Topsides Hydraulic Controls Interfaces

## Hydraulic power unit (HPU)





- Hydraulic control fluid to operate subsea actuators, valves, and downhole SCSSVs
- Stand-alone unit with local programmable logic control system (PLC) controls
- Unattended operational design
- Class 1, Division 2, Group D hazardous environment suitability – Applicable to GoM
- Dual-redundant 10,000 psi and 5,000 psi pumps for hydraulic supply
- Hardwire ESD feature for hydraulic ESD pressure dump with high-pressure delay for SCSSV closure
- Interface with platform or FPSO's DCS, ESD/PSD fire and gas system via pneumatic shutdown valve
- Single-skid mounted assembly with crane lift and deck tie-down capability
- Recirculation pumps and filters to ensure fluid cleanliness

## Topsides Computer/MCS Interface

### Computer interface

Functions of the Master Control Station (MCS)



- Provides operator interface to the subsea control system.
- Primary functions:
  - Provide a communications interface to subsea equipment.
  - Display current state of control system components.
  - Display process, pressure, temperatures, etc.
  - Provide a means of controlling these elements.
  - Perform automatic and operatorinitiated shutdowns.
  - Inform the operator of any process upsets.



## Computer interface – pressure profiling

- Sometimes referred to as valve footprinting
  - A technique which is used to assess the performance of the tree valve and actuator.
- Valve operation
  - The pressure in the hydraulic function line from the SCM to the actuator is measured by the SEM with a fast sampling rate for (typically) 10 seconds.
- Data is passed back to the MCS
  - May be displayed graphically and a visual assessment may be made of the valve/actuator performance.

## Pressure profiling

#### Wing Valve Opening



#### Wing Valve Closing



Note: These traces were taken from a system that uses a hydraulic supply pressure of

5,000 psi (345 bar) for tree valve actuators.

#### Stand alone Dual MCS (hot standby - local I/O)



#### Advantages

- Increased reliability
- Off-line system can be maintained while producing
- Modifications can be made on off-line systems

#### Disadvantages

- More expensive than single in terms of both hardware and software
- More complex software increasing possible maintenance costs
- Platform cabling costs may be high



#### **Advantages**

- Good saving in installation costs, particularly if the surface I/O count is large
- HPU pumps, etc. can be locally controlled by PLC

#### Disadvantage

PLCs add to system hardware costs

## Applicable industry standards and BP codes

### Industry standards:

- •API 17F/ Design and Operation of Subsea Production Systems; Subsea Production Control System
- •API 17E Subsea Umbilicals

### **BP** codes:

- •GP 78-18 Design and Operation of Subsea Production Control Systems
- •GP 78-09 Subsea Safety Instrumented Systems
- •GP 78-16 Subsea Control Fluid Selection
- •GP 78-05 Testing of Subsea Equipment: FAT, EFAT, SIT, and FIT

## Questions

