

Subsea Control Fluids

Presented by: Chuyan Nah

Author: Castrol Global Marine & Energy

The information in this presentation is confidential and provided for training use only. Material should not be reproduced without permission. The Information is believed to be accurate as of the date above. However, no warranty or representation, express or implied, is made as to its accuracy or completeness. The information is of a general and introductory nature - it is not intended to amount to, and should not be relied on as being, technical or legal advice on any specific piece of equipment or machinery, or regarding any specific issue or problem. No liability is accepted for any such reliance. It is the responsibility of the user to evaluate and use products safely, to assess suitability for the intended application and to comply with all applicable laws and regulations.

Material Safety Data Sheets are available for all our products and should be consulted for appropriate information regarding storage, safe handling, and disposal of the product. No responsibility is taken by us or other members of our group of companies for any damage or injury resulting from abnormal use of the material, from any failure to adhere to recommendations, or from hazards inherent in the nature of the material.

All products, services and information supplied are provided under our standard conditions of sale. For any additional information please visit our website: http://www.castrol.com/offshore or consult your local Castrol representative.

Castrol and the Castrol logo are the trade marks of Castrol Limited, used under licence.

Produced by Castrol Offshore Limited. Registered in England & Wales, no 2967804. Registered office: Chertsey Road, Sunbury-on-Thames, Middlesex. TW16 7BP.

Introduction

Safety Moment Control Fluid Considerations What is a Control Fluid Types of Control Systems System Design Hydrates Legislation and Testing Fluid Qualification Fluid Cleanliness Cleanliness Approach

Subsea Control Fluids

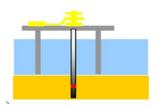
Safety Moment - Chemical handling

See anything wrong in these photos?

Safety Moment

Unacceptable Sample Submission

Acceptable Sample Submission



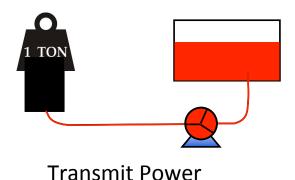
Types of Hydraulic Systems

Mineral Type Hydraulic Oil (Some applications require environmentally responsible oils)

Fire Resistant

Synthetic

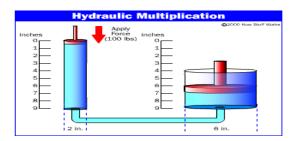
Subsea Control Fluids


What is a Subsea Control Fluid

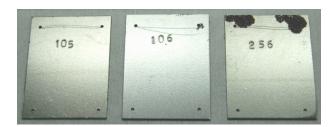
Control Fluid

These fluids provide medium to hydraulically control and operate subsea hardware from drilling rigs or offshore platforms. Subsea control fluids are broadly divided into two categories, those used for Drilling, and those used for Production.

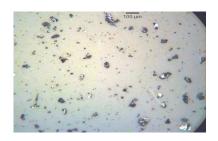
Subsea Hydraulic Fluid Basics



- Non compressible liquid
- Excellent materials compatibility
- Low viscosity for quick response times
- Good thermal stability
- Suitable lubrication
- Low pour point
- Tolerance to contamination
- Environmental compliance
- Field life stability



Subsea Control Fluids

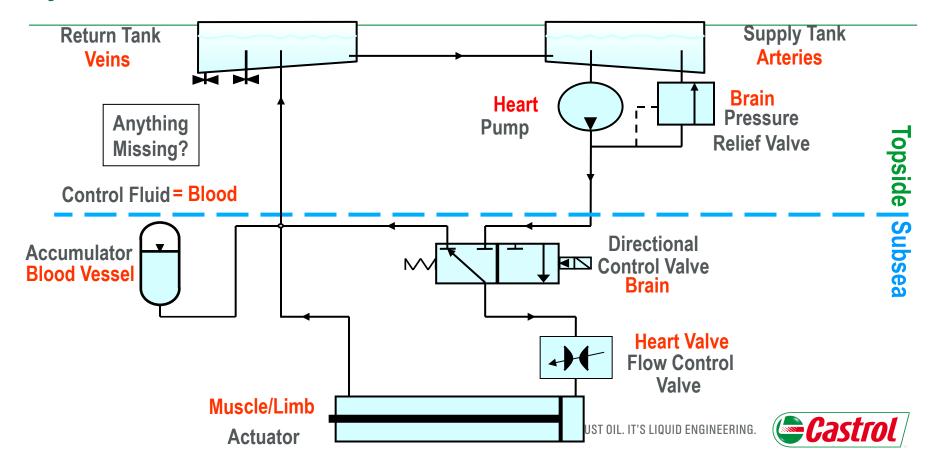

Fluid Functions

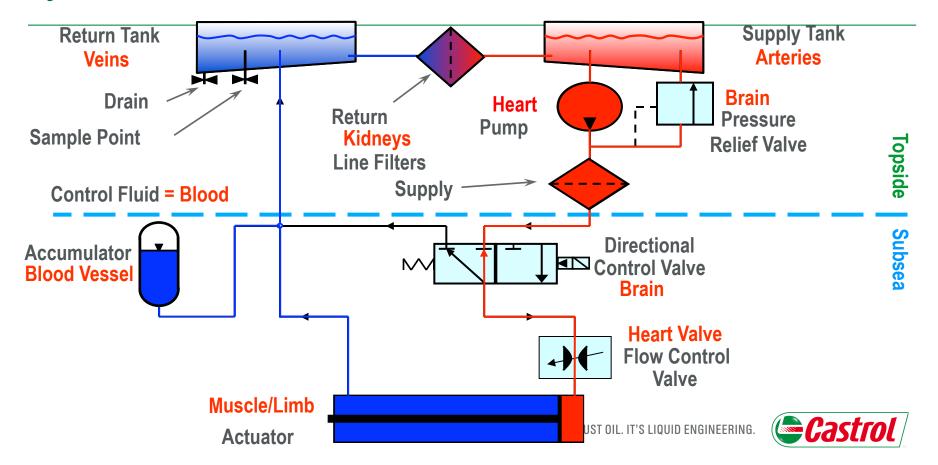
Fluid Flow and Pressure Transfer

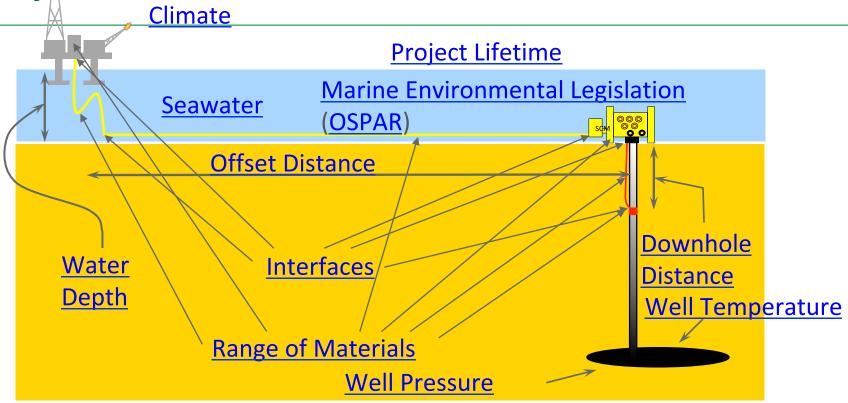
Corrosion Protection


Transport Debris

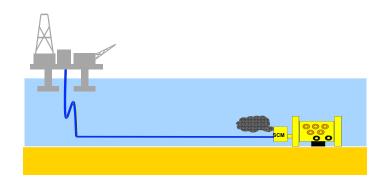
Material Compatibility


Lubricate and Cool

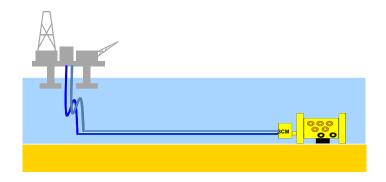

Sealing


System Schematic

System Schematic



Physical Considerations



Types of Control Systems

Open Loop (Total Loss)

- Return vented to sea
- 90% of Projects Worldwide
- Water/Glycol based fluids

Closed Loop

- From HPU to SCM and back to HPU
- 10% of Projects Worldwide
- Either Synthetic or Water/Glycol based fluid (Synthetics over 95%)
- Filled for life!

Water Depth

Effects of density difference between Control Fluid and Seawater need only be considered at depths > 1000m

+ve head – back pressure may affect valve closures

-ve head - sea water leaks into the system

Other issue is the low sea bed water temperatures which increase the risk of hydrate formation, especially for Gas fields

Deep Water

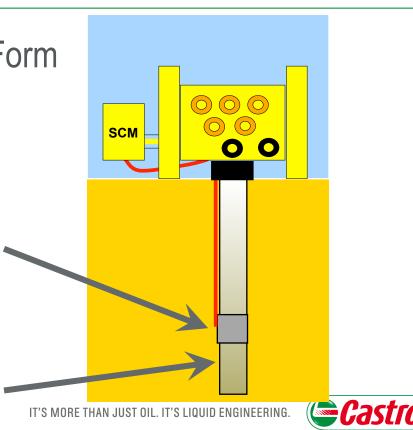
Hydrostatic Pressure (P) = Density (ρ) x Gravity (g) x Depth (h)

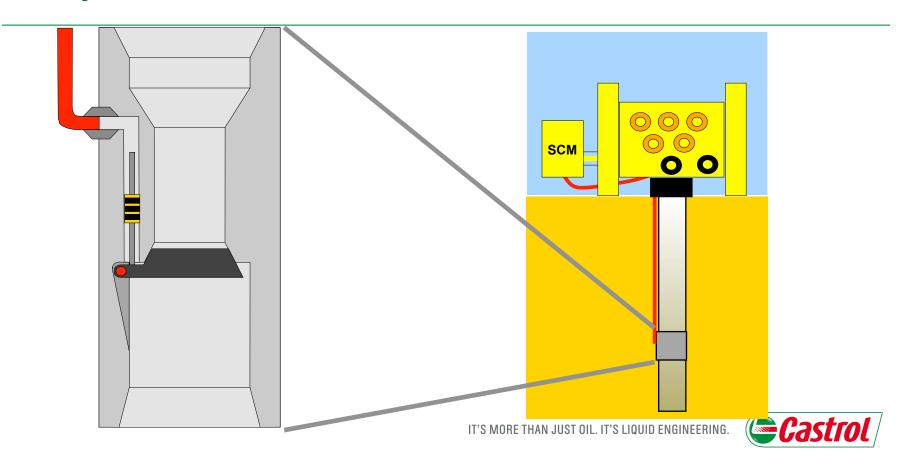
Density Comparison

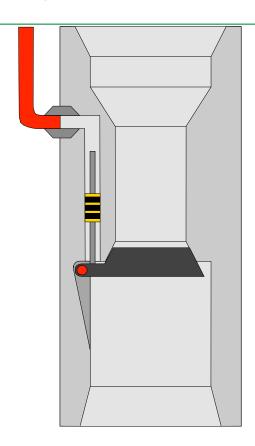
Synthetic Fluid 0.82 Water 1.00

Seawater 1.025 (varies across the world)

Aqueous Fluid 1.07

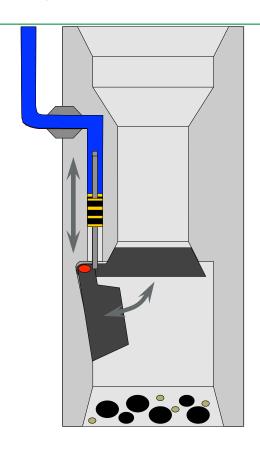

Fluid	Synthetic Fluid	Aqueous Fluid	
Seawater Hydrostatic Pressure (@ 3000m)	302 Bar	302 Bar	
Fluid Hydrostatic Pressure (@ 3000m)	241 Bar	316 Bar	
Δ Pressure	- 61 Bar	+14 Bar	

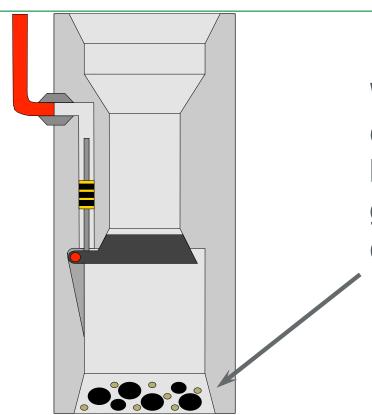


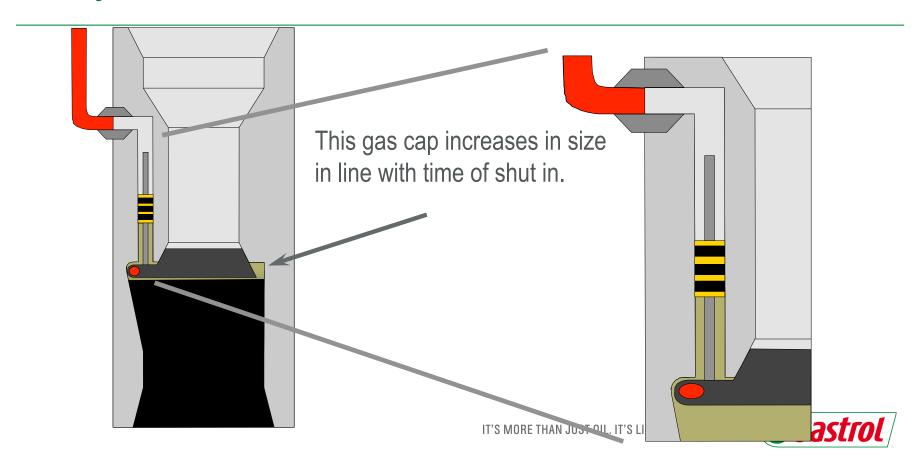

Mechanism by which Hydrates Form in the Control System?

2. You need a <u>failure</u> in a piece of equipment (i.e. Surface Controlled Subsurface Safety Valve (SCSSV))

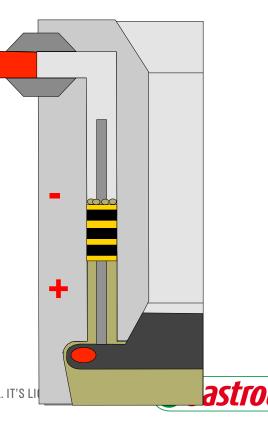
1. You need **Gas** in the production string

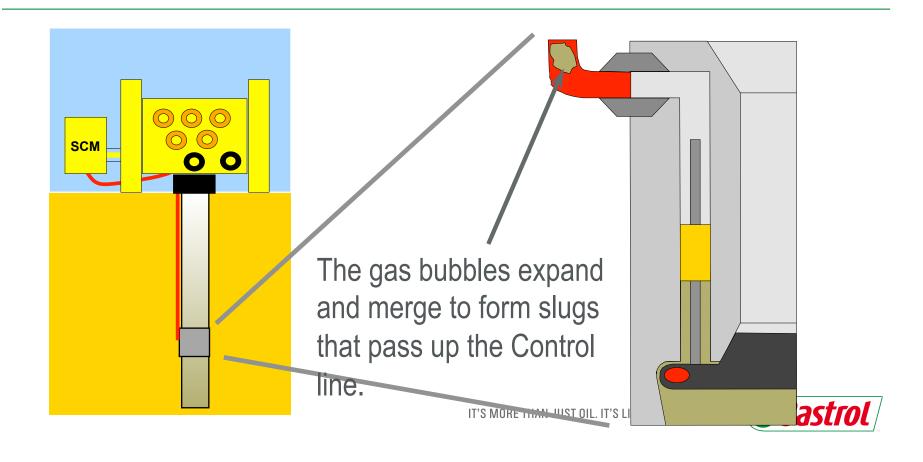


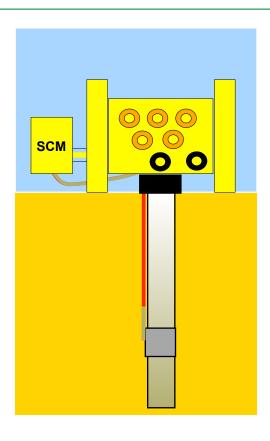

So what is the actual failure mechanism in the SCSSV that can cause hydrates to form?


- 1. To open the flapper, pressure is applied to the piston. (Note: This applied pressure needs to be regulated during the field life to maintain the same differential across the seals as reservoir pressure depletes.
- 2. When the flapper is opened the Oil and Gas begin to flow.
- 3. To close the flapper, pressure is removed from the piston.
- 4. As the Flapper and Piston operate the seals wear.

When the flapper is closed the Oil and Gas begin to build up. The gas starts to form a gas cap.

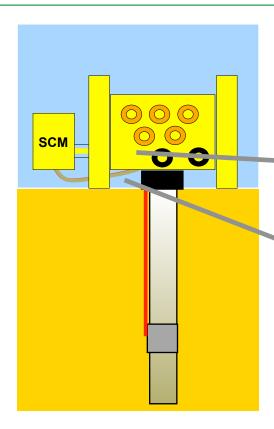


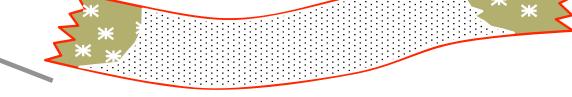



1. As stated earlier when the flapper is closed, pressure is bled off. If this pressure is below the reservoir pressure it creates a negative pressure drop across the seals.

2. The combination of seal wear and the altering direction of pressure drop across the seals can cause **Seal Failure**

3. This failure combined with the negative pressure drop across piston from the control line allows the gas bubbles to percolate up the control line.





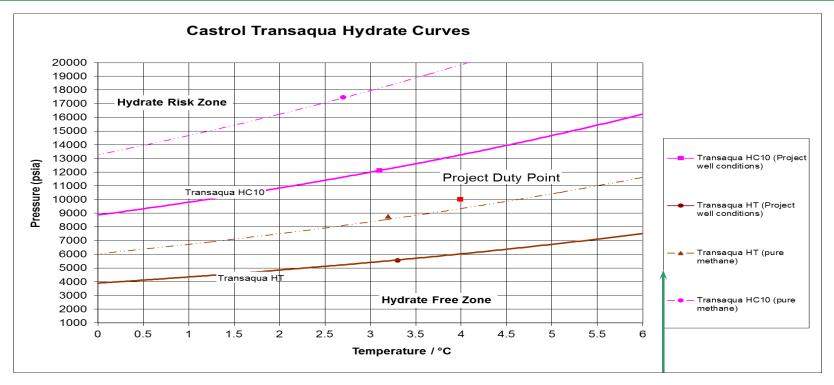
- The gas continues to percolate past the damaged seals and bubble up the control line expanding as it goes forming slugs of gas
- 2. The gas eventually passes through the Tubing Hanger (TH) and X-Tree (XT), and enters control lines external to XT going to the Subsea Control Module Mounting Base (SCMMB)
- These control lines are surrounded by sea water @ temperatures between 15°C to -2°C. (Norm is around 4°C)

IT'S MORE THAN JUST OIL. IT'S LIQUID ENGINEERING.

1. If <u>High Pressure</u> is then re-applied to open the SCSSV in the presence of <u>Gas</u>, free <u>Water</u> (in the control fluid) and the <u>Cold</u> temperature (caused by the surrounding Sea Water) then **Hydrates** will form.

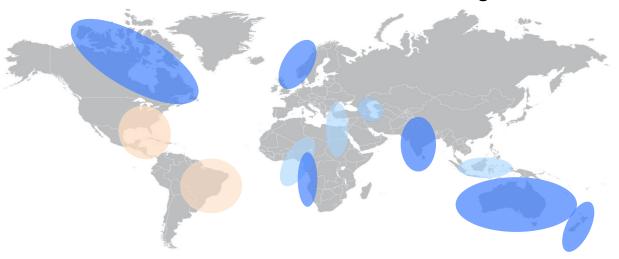
2. In severe case this could completely block the line, causing loss of communication and control of the SCSSV. Worst case it happens in the Subsea Control Module (SCM) and you lose control of the XT.

IT'S MORE THAN JUST OIL. IT'S LIQUID ENGINEERING

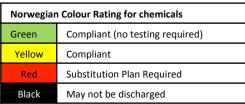


Crystalline solid compounds (water & light gases)

Example of Hydrate Analysis with Actual Project Conditions



Offshore Environmental Legislation (TRL 2)


Commitment to reduce the discharge of non-compliant chemicals

REGIONAL PRODUCT/CHEMICAL RATINGS

UK OCNS - RATING - A B C D E

Decreasing Environmental Hazard

North East Atlantic (OSPAR) UK, Norway, Netherlands + others

Each component testing for:-

- MARINE BIODEGRADATION
- **BIOACCUMULATION**
- MARINE TOXICITY

GULF OF MEXICO

Product level toxicity testing only No sheen on water surface **BRAZIL** – No specific environmental testing for subsea control fluids

Emerging Legislation

No specific offshore legislation. Drive for OSPAR compliance

SPECIES TOXICITY TESTING

ALGAE

CRUSTACEANS

FISH

SEDIMENT REWORKERS

ISO/API Testing (TRL 2)

Carry out qualification testing to ISO13628-6 /API 17F Annex C

- Thermal Stability High/Low temperature and High temperature in the presence of seawater
- Fluid compatibility Seawater, other Control Fluids, Completion Fluid and Operational Fluids**
- Material Compatibility Metals, Elastomer and Thermoplastics
- Filterability
- **Examples: Wellbore acids, methanol or compensation fluid, silicon or insulating oil



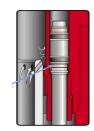
Subsea Leak Detection

ROV mounted floodlights showing fluid leak - visible spectrum (approx 200 L / day)

Materials Compatibility

Typical, long-term materials compatibility testing can include: 60+ Metals

Including key materials groups – Ferritic steels, stainless steels, yellow metals, tungsten carbide and nickel alloys


60+ Elastomers and Polymers

Specific grade to be tested from various key suppliers

30+ Coatings and Platings

Including phosphating, ENi plated components, resin and PTFE based coatings

OEM MATERIAL LISTS

FMC
AKER
GE
ROTATOR
HALLIBURTON
SCHLUMBERGER BAKER

Functional Equipment Testing (TRL 4)

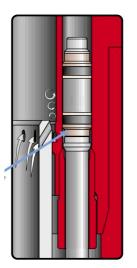
Working with Equipment Manufacturers

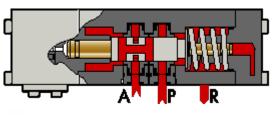
System approach

DCV

Pumps

SSSV


Umbilical's


Couplings

Actuators

Materials

Understanding Cleanliness

"ISO 11171 Calibration"	> 4 µm(c)	> 6 µm(c)	> 14 µm(c)	> 21 µm(c)	> 38 µm(c)	> 70 µm(c)	"corresponding to ISO class 6, 14 μm©"
SAE CODE	Α	В	С	D	Е	F	
3	6,250	2,430	432	76	13	2	12/9
4	12,500	4,860	864	152	26	4	13/10
5	25,000	9,730	1,730	306	53	8	14/11
6	50,000	19,500	3,460	612	106	16	15/12
7	100,000	38,900	6,920	1,220	212	32	16/13
8	200,000	77,900	13,900	2,450	424	64	17/14
9	400,000	156,000	27,700	4,900	848	128	18/15
10	800,000	311,000	55,400	9,800	1,700	256	19/16
11	1,600,000	623,000	111,000	19,600	3,390	512	20/17
12	3,200,000	1,250,000	222,000	39,200	6,780	1,020	21/18

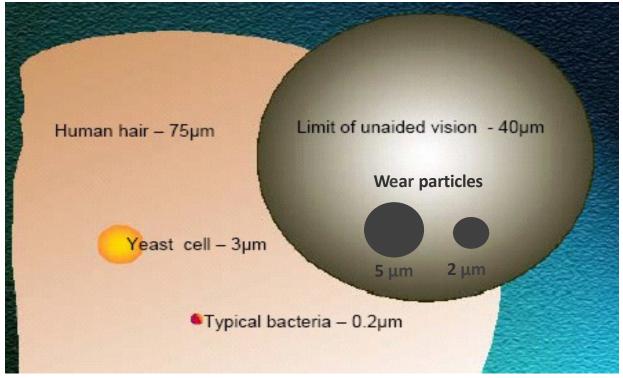
Cleanliness classes according to SAE AS4059 and conversion to corresponding cleanliness classes according to NAS 1638 and ISO 4406

Understanding Cleanliness

ISO 4406:1999 Code Chart

D	Particles per milliliter			
Range Code	More than	Up to / Including		
24	80000	160000		
23	40000	80000		
22	20000	40000		
21	10000	20000		
20	5000	10000		
19	2500	5000		
18	1300	2500		
17	640	1300		
16	320	640		
15	160	320		
14	80	160		
13	40	80		
12	20	40		
11	10	20		
10	5	10		
9	2.5	5		
8	1.3	2.5		
7	0.64	1.3		
6	0.32	0.64		

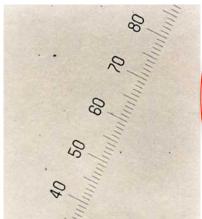
Fluid sample with: 1000 particles > 4 μm


Fluid sample with: 200 particles > 6 μm

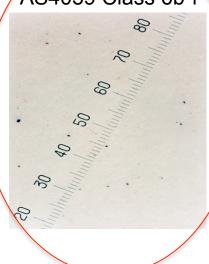
Fluid sample with: 15 particles > 14 μm

ISO Class 17/15/11

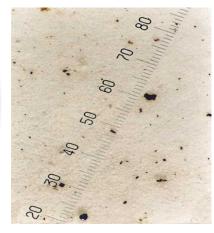
Relative Sizes of Small Particles

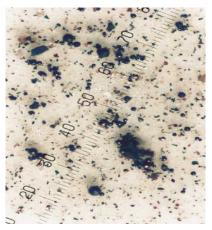

Cleanliness levels

There are 2 main cleanliness standards used in the Offshore industry

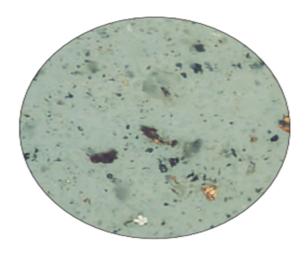

SAE AS4059 6b-f (replaces NAS class 6)

ISO 4406


AS4059 Class 4b-f


AS4059 Class 6b-f

AS4059 Class 8b-f

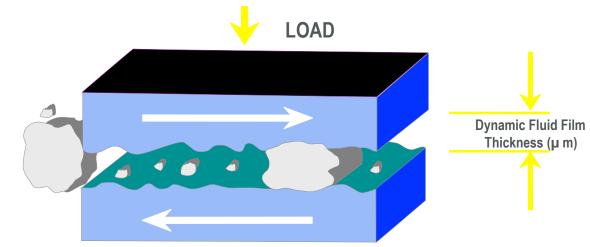


AS4059 Class 10b-f

Understanding Cleanliness

ISO 21 / 19 / 17 fluid (magnification 100x)

ISO 16 / 14 / 11 fluid (magnification 100x)


Wear Mechanisms

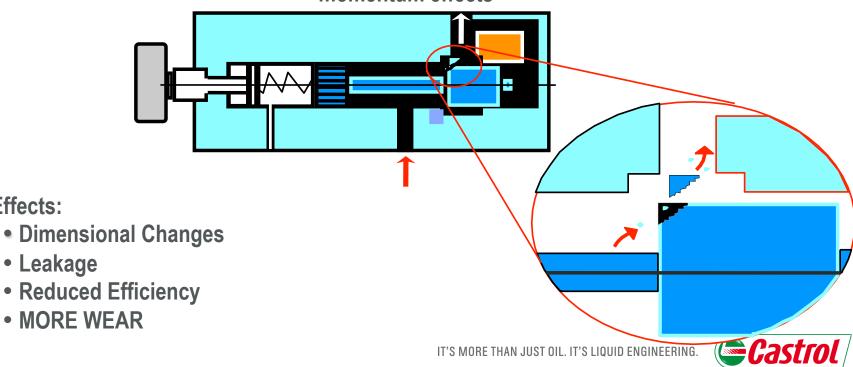
ТҮРЕ	PRIMARY CAUSE			
ABRASIVE WEAR	Particles between adjacent moving surfaces			
EROSIVE WEAR	Particles and high fluid velocity			
ADHESIVE WEAR	Metal to Metal contact (Loss of oil film)			
FATIGUE WEAR	Particle damaged surfaces subjected to repeated stress			
CORROSIVE WEAR	Water or Chemical			

Abrasive Wear

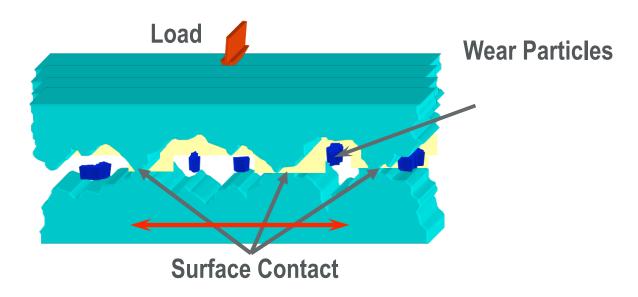
'Particles between adjacent moving surfaces'

Effects:

- Dimensional Changes
- Leakage
- Reduced Efficiency
- MORE WEAR

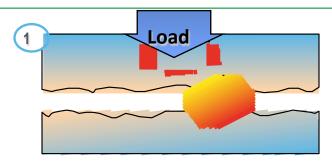


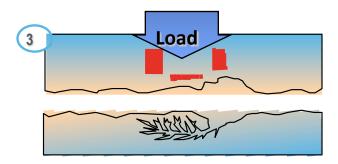
Erosive Wear

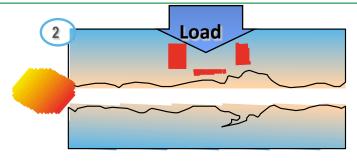

Effects:

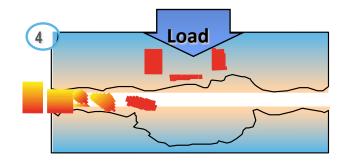
Leakage

'Particles impinge on the component surface or edge and remove material due to momentum effects'


Adhesive Wear


Shearing of welded surface peaks leading to the detachment of loose particles


Fatigue Wear of Surfaces (e.g. needle or roller bearing)


Particle Caught

After N fatigue cycles, cracks spread

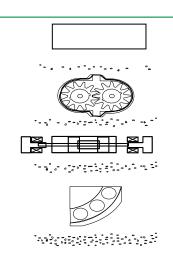
Surface dented, cracking initiated

Surface fails, particles released

IT'S MORE THAN JUST OIL. IT'S LIQUID ENGINEERING.

Chain Reaction of Wear

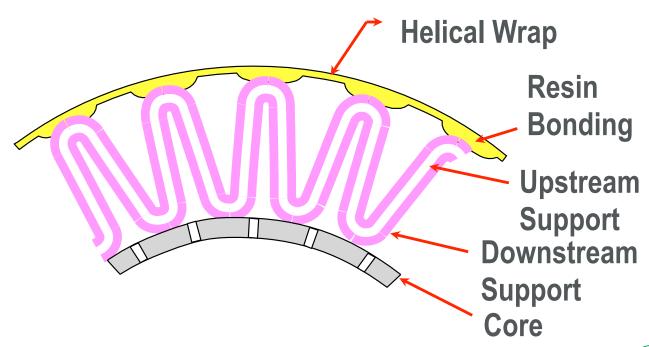
The wear process produces particles which themselves generate more debris


Wear increases with particle hardness and the number of particles

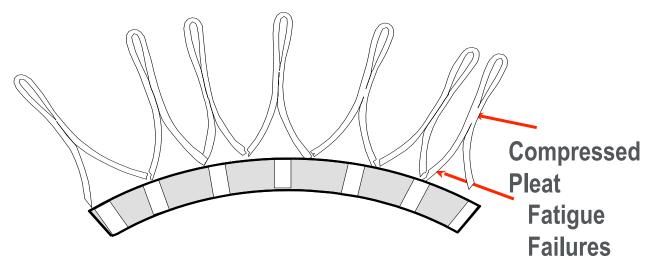
 If particle contamination is not controlled a chain reaction of wear will result

Chain Reaction of Wear

Reservoir
Gear Pump
Solenoid Activated
Spool Valve
Bearings


Breaking the Chain Reaction of Wear

High Performance Filter
Rated bx = 1000



Filtration Media - Supported Filter Element

Filtration Media - Unsupported Filter Element

Cyclic flows, pressure and increasing differential pressure cause unsupported medium to fail and pass harmful contaminants

Measuring filter performance

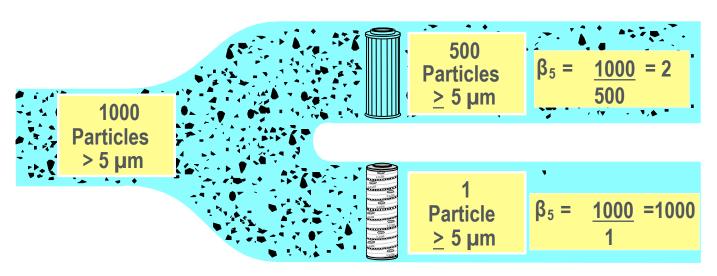
■Nominal Rating

-An arbitrary micrometer value, based on weight percent removal, indicated by the filter manufacturer.

■Absolute Rating

-The diameter of the largest hard spherical particle that will pass through a filter under specified test conditions. This is indication of the largest opening in the filter element.

■ Filtration Ratio (ßx)


-The ratio of the number of particles equal to or greater than a given size (x) in the influent fluid to the number of particles equal to and greater than the same size (x) in the effluent fluid

Filtration ratio βx

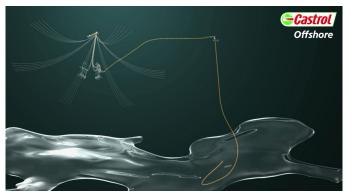
Number of upstream particles x µm and larger

Number of downstream particles x µm and larger

The Importance of Filter - Efficiency Ratings

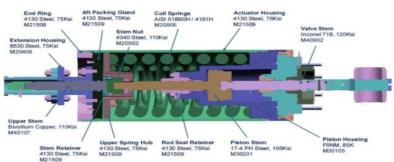
Filter Efficiency	1ST Pass	2ND Pass	3RD Pass	4TH Pass	5TH Pass
$\beta_5 = 2$	500000	250000	125000	67500	33750
$\beta_5 = 10$	100000	10000	1000	100	10
$\beta_5 = 1000$	1000	1			

1,000,000 initial particles > 5µm



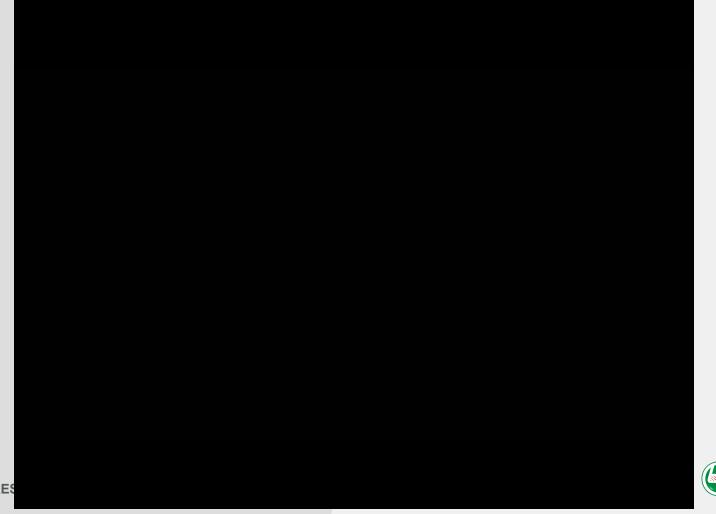
DCV Internals

Taking a system approach to cleanliness



Quick Checks Before Use

Routine Checking


- Subsea control fluids are required to be in excellent condition for use in operation, it is more than just a NAS class.
- Take a sample and compare it against a known clean sample for visible differences (Colour, Condition)
- Check for Cleanliness
- Check for any phase separation or haziness, if unsure Photograph both against a white graduated piece of card to show clarity.
- Check pH, Transaqua HT2 should be around 8.9
- If it doesn't feel right contact your technical services engineer

Questions?

Synthetic Fluid vs Aqueous Fluid

Brayco Micronic SBF(Dyed) introduced into Sea Water

Control Fluid (Dyed) introduced into Sea Water

