

Floater Concept Review

Presented by: Manoj Jegannathan

The Jukes Group

Floating Production Systems

Contents

- Floating Platform Selection Criteria
- Overview of Established Floater Capabilities
 - Spar
 - TLP
 - Semi-Submersible
 - FPSO
- Review of New Floater Concepts

Contents

- Floating Platform Selection Criteria
- Overview of Established Floater Capabilities
 - Spar
 - TLP
 - Semi-Submersible
 - FPSO
- Review of New Floater Concepts

Dry or Wet Trees? – Reservoir Geometry Drivers

Wet Tree Hub Platform Example – Na Kika - US

Dry or Wet Trees? - Hull Selection Impact

Export options – Pipeline or Tanker Offloading

Pipeline

- Best solution in areas of existing infrastructure (pipeline tie-ins and access to market)
- High cost if large distances to tie-in
- Lowest cost operation
- Semi, Spar, TLP

Tanker Offloading

- Best (sometimes only) solution in remote areas
- High operational cost
- Requires local storage
- FPSO, FSO
- possible Spar, Semi

Hull Selection - Relative Profiles & Nomenclature

Hulls are Riser (and Topsides) Support Platforms

- Hulls receive a lot of attention
 - 100 new ways to provide buoyancy every year at OTC
 - This does not mean that there are 100 new, viable hull forms at OTC
- Hull is designed to:
 - Support topsides with sufficient stability, buoyancy margins, and trim capacity
 - Support risers
 - Provide sufficient access to well systems (i.e for drilling platforms)
- A good hull is a good riser support platform

(risers are often the most challenging part of requirements)

Risers, Hulls and Mooring are Interdependent

Global Performance Design Approach

- Strong interface between risers, moorings, hull
 - Mooring design loads, offsets dependent on riser unbalanced forces
 - Riser design offsets dependent on mooring system performance
 - Riser strength driven by extreme offsets and pitch angles
 - Riser fatigue driven by operational motions
- Philosophy is to design from the inside out I.e. design around riser configuration (a balancing issue!)
- Risers are the most critical aspect of the design hull and configuration are set up to treat the risers well
- A good hull is a good riser support platform

SUTI - US

Hull-Riser Interaction

- Hull and riser system design must "match" each other
- Option 1: provide for hull with minimal motions
 - Dry tree riser approach
 - → Spars
 - → TLPs
 - Risers primarily sensitive to heave motions
- Option 2: provide a riser system which can handle larger motions
 - Flexible risers
 - → Semis
 - → FPSOs
- Option 3: Balanced approach, minimize system cost
 - SCR's, SLWR's
 - → Semis
 - → FPSOs
 - → TLP's
 - → Spars

Vertical Motion Principles

Wave Frequency Motions at Riser Hangoff in 100 Year Hurricane

Static Heel Angle

Downflood Angle

Heel (A)

Semi-Submersible Stability & Motions Fundamentals

- US

Hull Selection - Riser Hang-Off Interfaces

- SCRs
 - Porch
 - Pulltube

- Flexibles / Umbilicals
 - Pulltubes
 - Penetrations

Contents

- **Floating Platform Selection Criteria**
- Overview of Established Floater Capabilities
 - Spar
 - TLP
 - Semi-Submersible
 - FPSO
- Review of New Floater Concepts

Overview of Established Floater Capabilities - Spar

Functions

- Wellhead Support
- Drilling
- Workover
- Production
- (Oil Storage)

Capabilities

- Water Depth (300m 3,000m)
- Process 20 -155 kboed

Current Presence

- GoM
- SE Asia (Murphy Kikeh)

Spar – Topsides Lift

SIII Spar – Topsides Floatover - US

Top Tensioned Riser – Buoyancy Cans

Top Tensioned Riser - Tensioners

Contents

- **Floating Platform Selection Criteria**
- Overview of Established Floater Capabilities
 - Spar
 - TLP
 - Semi-Submersible
 - FPSO
- Review of New Floater Concepts

Overview of Established Floater Capabilities - TLP

Functions

- Wellhead Support
- Drilling
- Workover
- Production

Capabilities

- Water Depth (150m -1,800m)
- Process 45 250 kboed

Current Presence

- GoM
- North Sea
- West Africa
- Brazil
- SE Asia

24 Tension Leg Platforms 1980-2010 (3 more to 2014, plus 4 in design/construction)

Mini-TLPs

Conventional -TLPs

Semi/TLP Hull/Topsides Integration and Commissioning Options

- 1. Integrate hull and topsides quayside using shore-based or floating crane facility.
- 2. Integrate hull and topsides in sheltered location via floatover.
- 3. Module support frame, module lifts
- 4. Jacking of deck, skidding of hull

Contents

- **Floating Platform Selection Criteria**
- Overview of Established Floater Capabilities
 - Spar
 - TLP
 - Semi-Submersible
 - FPSO
- Review of New Floater Concepts

Overview of Established Floater Capabilities – Semis

Functions

- Production
- Drilling & Workover possible

Capabilities

- Water Depth (80m –3,000m)
- Process 12 315 kboed

Current Presence

- China, SE Asia, India
- Brazil
- GoM
- North Sea
- Australia

"Snorre B"

Semi-Submersible Production & Drilling Configuration

SIIT PDQ Semi – Thunder Horse

Semi Design Issues affecting configuration

- Payload/Displacement
- Deck area requirements
- Air gap
- Channel/quayside Draft
- Dry transport Draft
- Stability at integration
- Stability in-place
- Overall width for dry dock
- Motions for risers (draft, column/pontoon ratio, column spacing, riser porch location)

Contents

- **Floating Platform Selection Criteria**
- Overview of Established Floater Capabilities
 - Spar
 - TLP
 - Semi-Submersible
 - FPSO
- Review of New Floater Concepts

Overview of Established Floater Capabilities – FPSO

Functions

- Production
- Storage
- Offloading

Capabilities

- Water Depth (30m –3,000m)
- Process 10 330kboed
- Storage up to 2mmbbl

Current Presence

- Brazil
- Asia
- Africa
- Australia
- North Sea & N. Atlantic
- Canada
- Mediterranean
- GoM (Mexico and USA)

FPSO Mooring Systems –Turret Moored

- All Mooring Lines Attached to Turret
 - Internal or External
- All Risers Routed Through Turret
 - Requires Drag Chain or Swivels
- Allows Passive Weathervaning
 - Function of Turret Location
- Suitable for Harsh Environments
 - Omni-directional prevailing conditions
- Disconnection possible
 - White Rose, Terra Nova, Stones

North Sea, North Atlantic, GOM, Africa, Australia

FPSO Mooring Systems – Spread Moorings

- Mooring Lines Routed to Optimum Positions on Vessel
- Risers Routed along sides of Vessel
 - Reduced Congestion
 - Increased capacity
- No Weathervaning
 - DICAS offers limited capacity
- Suitable for Moderate Environments
 - Uni-directional prevailing conditions

Summary of Established Floater Capabilities

	FPSO	Semi-submersible	Spar	TLP
Production	Yes	Yes	Yes	Yes
Storage	Yes	Possible	Yes	No
Drilling	No	Yes	Yes	Yes
Workover	No	Yes	Yes	Yes
Water Depth limitation	No	No	No	1800m

Contents

- **Floating Platform Selection Criteria**
- Overview of Established Floater Capabilities
 - Spar
 - TLP
 - Semi-Submersible
 - FPSO
- Review of New Floater Concepts

Semisubmersibles for Dry Tree Application

HVS Semi, Technip

Minifloat- Marine Innovation & Technology(MI&T)

E-semi, Floatec

Octabuoy, Moss Maritime

OPTI-EX, Exmar Offshore

DTS, Aker

Semisubmersibles for Dry Tree Application

FHS(Free Hanging Solid Ballast) Semi, IntecSea

DCC(Damper Chamber Column)Semi, IntecSea

PC(Pair Column) Semi, HOE

MCF(Multi Column Floater), ✓ Horton Wison Deepwater

Truss-semi, Floatec

New Concepts - Multi-Function Floaters

FPDSO

• Integrate Dry tree, Drilling, Processing and Storage

Thank You!

Questions?

6/17/20