

Offshore Pipeline Installation

Presented by: Naveen Ravirala

Author: Craig Lamison

Pipeline Installation

Definitions

- Primarily covers steel pipe
- 3" nominal diameter and up
- Other alternatives:
 - Flexible pipe
 - Coiled tubing
- Welded connections used for pipelines
- Mechanical connections viewed as:
 - Less reliable
 - More expensive

Definition - Installation

- Fabricating line from joints above water
- Placing line undamaged on the seabed
- Associated activities such as
 - Initiations/Terminations
 - Abandonment/Recovery
 - Tie-ins
 - Risers
 - Burial
 - Shore Approach

What Can Go Wrong – Pipe Buckle

Pipeline/Flowline Installation

- Offshore Fabrication
 - S-Lay (conventional pipelay)
 - J-Lay
- Onshore Fabrication
 - Reel-Lay
 - Tow

S-Lay (Conventional Pipelay)

S-Lay History

- First "offshore" pipeline
- Galveston Bay
- Laid by Brown & Root
- Technology adapted from marsh lay
- Linked "Spud" barges

S-Lay (Conventional Pipelay)

S-Lay (Conventional Pipelay)

S-Lay

Monohull (Hercules, <u>DB-16</u>, Solitaire etc.)

- Semi-submersible (Castoro Sei, Semac)
- Lay rates typically on order of 2.0 miles per day
- Commonly used for shallow water
- Some dynamically positioned deepwater vessels
- Good for long distance & large diameter pipelines

S-Lay

- Pipe brought aboard in 40-80 ft. "joints"
- Joints welded end-to-end on "firing line"
- Firing lines consist of:
 - welding stations (5-7)
 - NDE (Non-Destructive Examination or Testing - NDT) station (1)
 - field joint coating/accessory stations (1-3)

S-Lay

S-Lay Welding

S-Lay Limitations

• S-lay uses a "stinger" on the stern of the barge to support the pipe "overbend".

- Stingers are up to 300 feet long & curved for deepwater
- Radius of curvature selected to avoid pipe overstress
- Sharp radii for small dia. lines, large radii for large lines
- S-Lay generates very high top tensions
- Pipe may undergo plastic strain in the overbend

S-Lay Limitations

- Fatigue damage may occur in the pipe near the stinger tip if pipelay halted with pipe suspended.
 - Sacrificial anodes collared/tapered to pass over stinger rollers
 - Special procedures to handle PLEMs and PLETs (Pipeline End Manifolds or Terminations) over stinger
 - Alternatively attach PLEMs and PLETs by:
 - lowering pipe to seabed
 - recovering pipeline to side of vessel
 - welding on the PLEM/PLET & lowering

Vessels don't turn on a dime

J-Lay

Modular J-Lay

J-Lay Methodology

- Quad jointing (4) or hex jointing (6)
 - May be done onshore or offshore
- As with S-Lay, remaining welding on vessel
- Multi-joints are upended
- Welding in vertical or near-vertical configuration.
- Pipe may be supported:
 - On forged steel J-lay collars welded to pipe
 - By tensioners

J-Lay Schematic

J-Lay Advantages

- Easy to deploy pipe vertically reducing top tension
- Good for very deep water (6,000 feet plus)
- Configuration good for SCR (Steel Catenary Riser) installation
- Stinger is eliminated.
- No plastic straining of pipe.
- PLEMs and PLETs can be lowered through moonpool (subject to size).

J-Lay Disadvantages

- Slowest of all current pipelay methods
 - order of 1 mile per day.
- Still requires some welding offsho
- Cycle times are long
 - all operations at one work station.
- If need J-lay collar, forgings add to cost
- Limited in shallow water based on diameter

Reel-Lay History - Operation **PLUTO**

Pipelines under the ocean

- D-Day June 1944
 - 4-inch pipelines laid from England to France
 - Fuel for Allied invasion forces.
 - Lead pipe, wrapped in steel reinforcing cables
 - Coating -- coal tar enamel
 - Wound onto large floating reels or "conundrums"
 - Reel towed across Channel laying pipe
- 1945
 - Hopper dredge HMS Persephone converted to vertical reel
 - Laid rigid steel pipe as first reel ship.

Horizontal Reel Barges

Santa Fe Reel Barge

- •RB-2 "Chickasaw", 1970
 - Purpose-built barge
 - In service with Global Industries
 - Upgraded w/dynamic positioning

Technip Deep Blue

Technip Deep Blue

- Dual reels hold 5600 metric tons
 - 4-inch to 18-inch diameter pipe.
- Additional 5600 tonnes of storage
 - on deck for J-lay pipe
 - under-deck baskets/on-deck carousels for umbilicals
- Reel-lay up to 550 tonnes top tension
- J-lay up to 770 tonnes top tension.

Subsea 7 Seven Scandi Navica

Subsea 7 Seven Navica

- 2500 ton reel capacity
- 2" 16" Pipe
- Single load approximately:
 - 43 miles of 6"
 - or 7.5 miles of 16"
- 250 Short ton tensioning capacity

Spoolbase Fabrication

Mobile Spoolbase, Alabama

Pipe Spooling at Mobile

Reeling 18-Inch Pipe

Advantages of Reeled Pipe

- Fabrication is performed onshore
- Controlled environment, off the critical path
- Weld repairs are performed on onshore
- Lay rates of up to 10 miles per day
- No stinger w/ J-Lay configuration for vertical reel
- Stinger required for horizontal reel

Disadvantages of Reeled Pipe

- Requires stringent pipe quality control
 - Match dimensional & mechanical properties.
- Requires testing of coatings and field joints
 - Bending strains of up to 2% on reel
 - High crushing loads on reel.
- Pipe undergoes plastic straining
 - Marginally affects fatigue performance.
- Rule of thumb, requires D/t ratio < 20
 - Results in thicker pipe in shallow waters
- Concrete weight coatings not feasible
- Integral buckle arrestors cannot be used.

Muddy Waters – Combination

Installation Methods vs. OD & WD Traditional Limitations

Pipeline OD vs. Water Depth by Pipelay Installation Methods

Pipe fabrication limitations can also govern

Installation State of the Art is Advancing

Largest diameter pipelines -- 56" (Shallow)

Large deepwater pipelines

 Blue Stream Pipeline (J-Lay Saipem 7000) 24", 6900' WD

BP/Shell Okeanos Gas, NaKika, 24", 7,300' WD

BP Proteus Oil to Thunder Horse 28",

Vessels for BP jobs

Heerema's J-lay Balder >3,700'

Allseas' S-Lay Solitaire < 3,700'

- Independence Hub, 24" PL, 20" SCR Solitaire ~8000' WD

SCR Hang-off by Balder

Installation State of the Art --Continued

Large deepwater pipelines (Cont'd)

- Independence Hub, 24" PL, 20" SCR

Solitaire ~8000' WD

SCR Hang-off by Balder

- Perdido
- 18" PL & SCR
- Solitaire 8,250' WD

Universal Installation Activities

- Pipe Haul
- Sorting
- Welding
- Inspection
- Field Joint Coating

Pipe Haul

Ready Racks - Pipe Sorting

Pre-Heat

Internal Line-Up Clamp

Root and Hot Pass

Fill and Cap

Radiographic Examination

Radiographic Interpretation

Field Joint Blasting

Field Joint Coating Application

Towed Pipeline Installation

- Two common methods
 - Controlled Depth Tow Method (CDTM)
 - Bottom Tow
- CDTM, North Sea & Australia
- Bottom Tow, Gulf of Mexico

CDTM Fabrication Site

CDTM Technique

CDTM Launch

Bottom Tow Launch

Bottom Tow Fabrication Site

Tow Advantages

- Onshore fabrication & quality control
- Installs multiple bundled lines at once
- Can be readily insulated
- Rapid offshore installation
- Inexpensive offshore spread
- Low stress even in deepwater

Tow Disadvantages

- Limited by length of fabrication site
 - CDTM ~7 km
 - Bottom tow ~ 7 miles
- Longer lines require offshore connection
- Bottom tow requires extensive survey
- Few fabrication sites
- Requires delicate weight balance

Associated Activities

- Pipeline Burial
- Pipeline Terminations
 - PLETs, FLETs, & PLEMs
 - Jumpers
 - SCRs
 - Shore Approaches

Pipeline Burial

Pipeline Jumper Installation

Steel Catenary Riser (SCR) Installation

J-Lay or Reel SCR Installation Method

J-Lay or Reel SCR Installation Method

Shore Approach

