

FMC-(MPS) SUT Training Manifold and Pipeline Systems

Presented by: Eric Stagner

Author: Castaneda

FMCTechnologies

We put you first. And keep you ahead.

Manifolds & Tie In Systems

Objectives of Presentation

- History of MPS
- Understanding of Field Layouts
- MPS Scope of Supply
 - Core Components
 - Assemblies
- Design Considerations
- Fabrication / Transportation / Installation
- MPS Around the World
- The Future of MPS

The History of How MPS came to be

Surface "Dry" Trees

Subsea Wellhead

Sled

Well Jumper

Sled

Well Jumper

Flowline Jumper

Sled

Pigging Loop

Well Jumper

Subsea Field Layouts

Field Layouts Define MPS

Subsea Field Layouts

1-2 Well Tiebacks

Multiple Tiebacks

Hybrid Development

Princess

3 mile tieback to Ursa TLP 3,700 ft water depth 11,000 to 14,000 psi / 190°F

Independence Hub Mixture of Cluster and Remote / Inline Tie Backs

Cluster Manifold - Azurite (Congo)

MPS Core Components

Building Blocks for MPS Equipment

MPS Core Components – Building Blocks

- FMC Gate Valves
- OEM Gate, Ball & Check Valves

- UCON-H, ROVCON, STABCON, Hubs, Caps, Tools
- UCON-V, TORUS III, MAX collet

Piping Components – Hubs, Pipe and Pipe Fittings

Valves

- Application
 - Well Branch/Flowline Isolation
 - Pigging Isolation
 - Injection Service
- Sizes
 - $\frac{1}{2}'' 10''$
- Unique to MPS (ManTIS)
 - Larger sizes
 - Butt weld connections

Large Bore Gate Valves

- Designed and qualified for 10,000 ft water depth
 - 7"- 10K Manual Valve
 - 7"- 10K FSC/FSO Actuated Valve
 - 7"- 15K Manual Valve
 - 7"- 15K FAI/FSO Actuated Valve
 - 8.5"- 12.5K FAI/FSO Actuated Valve
 - 9"- 6.65K FSC/FSO
 - 9"- 10K Actuated Valve (Surface)
 - 10"- 12.5K Manual Valve
 - 10"- 12.5K FAI/FSO Actuated Valve

Mechanical Connectors

- Working pressure up to 15,000 psi
- MAX-8 designed to accommodate up to 8" pipe; MAX-14 up to 14" pipe
- Connector Actuating Tool (CAT) performs external lock/unlock, hub alignment, and gasket replacement
- All hydraulic components integral to recoverable CAT (no hydraulics left subsea)
- MC gasket provides primary metal seal and secondary non-metal seal

MAX-8 / MAX-14

24

Mechanical Connectors

CAT Variations

CAT-Lite

Land CAT

Hydraulic Connectors

5" - 20" pipe sizes

Torus III Connector w/ Integral Soft-Land System

MPS

UCON™ and Clamp Connectors

The UCON[™] Tie-In system is developed in close co-operation with StatoilHydro

UCON-V / KLV Clamp Connector Benefits

- Lowers installed cost for well and flowline jumpers.
- Eliminates need for proprietary hydraulic connector actuation tools (CATs)
- Simplifies offshore operations, eliminating difficulty with handling and resetting CATs
- Allows more jumpers to be carried offshore per deployment.
- Eliminates future risk that CATs are not available for a future intervention

KLV-8 Clamp Connector

- KLV Clamp Connector initially designed to interface with existing MAX hubs
- Connector tooling is now ROV installable and removable
- Significantly lowers total installed cost

MAX Collet Connector & Connector Actuation Tool (CAT)

KLV-8 Clamp Connector

Pressure Caps

Application

- Permanent / Temporary pressure barrier
- Flowline flooding
- Jumper metrology
- Surface or subsea installable and Elastomer and Metal Sealing Pressure Caps (5" 8" Pipe) subsea retrievable by ROV or w/ CAT
- 15,000 psi WP
- 10,000 ft w.d.
- 20-year life

Sizes

-5'' - 14'' pipe

Elastomer and Metal Sealing Pressure Caps (9" – 14" Pipe)

Pressure Caps

Externally Locking MAX-14

MAX-8

MPS Assemblies

Upper Level Products

MPS Assemblies

- Manifolds
- Foundations
- PLETs
- PLEMs
- Sleds
- In-Line Tees
- Jumpers

Manifolds

- Application
 - Co-mingle flow several wells into 1-2 flowlines
- Manifold Sizes

Branch Sizes

$$-4''-7''$$

Flowline Sizes

Manifolds

2-Header, 5-Slot Manifold 10ksi w.p. 6" branches, 8" headers Pig Loop, SCM, C/I, Mudmat

2-Header, 4-Slot Manifold

Foundations

Increasing Cost

Foundations - Mudmats

Manifold and Pipeline Systems

37

Foundations - Suction Piles

- Up to 20 ft diameter
- Up to 90 ft long
- Suction pile penetrates soil under its own weight
- ROV closes valve on top and pumps water out of can
- Sea head (.44 psi/ft) pushes suction pile into sea floor

Foundations - Suction Piles (Agbami)

In-Line Tees

41

Intermediate Sled

Various Gas Lift Sleds & Manifolds

Manifold and Pipeline Systems

Design Considerations & Analysis

Design Considerations

Manifold Piggability

Various Pig shapes:

Structural Analysis - SACS

Analysis Cases		
Lift Analysis	Dead weight of structure and piping + Dead weight of pigging loop	
Transportation	2.0g vertical, 0.5/0.3 g lateral	
	2.0g vertical, 0.3/0.5 g lateral	
Jumper Installation	Dead weight of structure and piping + Pigging loop loads + CAT weight + Jumper operating loads	
Operating	Dead weight of structure and piping + Piping thermal loads + Pigging loop operating loads + Jumper operating loads	
Snag	Dead weight of structure and piping + Pigging loop operating loads + Jumper operating loads + Snag load on hub	
Dropped Object	Dead weight of structure and piping + Pigging loop operating loads + Jumper operating loads + Dropped object	
RO∀ Impact	RO∀ Impact on MQCs	

Piping Analysis - AutoPIPE

Analysis Cases				
Hydrotest	- 12,800 psi Internal Pressure			
	- Ambient Temperature			
	- Gravity (pipe dead load, insulation, water)			
	- No jumper loads			
	- 2.0g vertical, 0.5/0.3 g lateral			
Transportation	- 2.0g vertical, 0.3/0.5 g lateral			
	- No jumper loads			
	- 10,000 psi Internal Pressure			
Qui a matilia m	- 250F Operating Temperature			
Operation	- Gravity with bouyancy			
	- No jumper loads			

Jumper Analysis - AutoPIPE

Rigid Pipe Vertical Jumper Configurations

'M' Shaped Jumper

Rigid Jumper Lengths

Well Jumpers (O.D. in.)	Min. / Max. Length ('X' ft.)
4"	50' – 100'
5″	50' – 100'
6"	50' – 100'
7"	60' – 100'

Flowline Jumpers

Flowline Jumpers (O.D. in.)	Min. / Max. Length ('X' ft.)
8"	60' – 120'
10"	80' – 120'
12"	80' – 150'
14"	100+'
16"	100+'
18"	100+'

Thermal Analysis – ANSYS

FEA Analysis

Finite Element

MPS Fabrication

MPS Fabrication

Kiewit - Corpus Christi

Grinaker - Nigeria

Spitzer - Houston

Manifold Fabrication - Structure

Manifold and Pipeline Systems

Manifold Fabrication – Pipe Kit

Manifold Fabrication – Integration

Manifold Fabrication – Controls (SCM)

Manifold Fabrication – Insulation

Manifold Lift Test and Interface Test

Jumper Fabrication

- Connector kits locked onto vertical facing hubs.
- Horizontal & Vertical section kits are fitting and welded out.
- Jumper is hydrostatically test
- Final assembly of remaining components.
- Trial Lift

Jumper Fabrication

Petrobras *Cascade/Chinook* - 4-slot Manifold SIT

65

Manifold and Pipeline Systems

Petrobras *Cascade/Chinook* - Manifold and Jumpers SIT

Transportation and Installation

Manifold Transportation and Installation

Agbami Manifold Sail Away

In-Country capabilities - A key success factor

Agbami Project (Nigeria)

Heerema - DCV Balder

Pendulous Manifold Installation Method - Roncador

Anadarko/Kosmos/Tullow Jubilee -Riser Base Installation

Atlantis Manifold Installation

Blind Faith Manifold Installation

Manifold and Pipeline Systems

75

Blind Faith - PLET Transportation

PLET Installation

`J' Lay

Jumper Transportation

Shipping Stands

Sea Fastening on Shipping Stands

Jumper Transportation (Offshore)

- Jumpers are transported vertically on barge or AHV
- Stands are designed for 1G roll motion based on the weight of heaviest anticipated jumper
- Spreader Bar can be shipped pre-rigged to jumper in own shipping stands

Rigid Jumper Transportation

Flexible Jumper Transportation

Jumper Installation

50' lg. 5" Well Jumper

12" Flowline Jumper Installation (153' lg.) Using MAX-14 Connectors & CATs

Jumper Installation

Callisto Well Jumper Installation - UCON-V KLV-8 Clamp Connectors, Deepwater GoM (8k' w.d.)

Global MPS

Regional Variations

FMC's Global Manifold & Pipeline Systems Supply

Gulf of Mexico

North Sea

HOST – Hinge Over Subsea Template

N. Sea Manifold - Overtrawlable Structure

& Diver Assist Flowline Connections

Deepwater Trawling

Nelson Project, UK Sector North Sea

Ormen Lange – 20" 8-Slot Manifold

Brazil

Future MPS

Cluster Manifolds with Boosting

Subsea Processing Systems

Include significant MPS elements

Subsea Processing – *Tordis* Manifold Module

End of Presentation

Thank you for your Attention!